

Beyond Z-Stacking: Introducing Realtime EF Technology

for Smarter Digital Scanning

Company General Information

Advancing Diagnostics through Practical, Scalable Solutions

Azer Scientific

Powered by Biolyst

Company

Establishment

Founded in 2003 U.S.-Based Manufacturer

Experties

20+ Years of Industry Experience Lab Workflow Solutions

Product Portfolio

Histology Cytology Hematology Microbiology General Lab Supplies

Pathology Workflow Focus

From Staining to Imaging

Innovative Service & Equipment

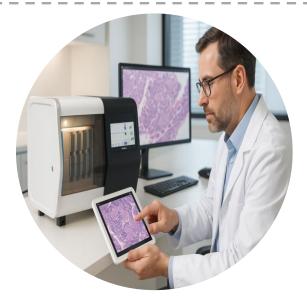
Clients & Market

Hospitals Reference Labs Academic Institutions

VIEWORKS

To make remarkable contributions to humanity by providing the best imaging solution

Income Revenue 191.5 M USD	Establishment 18 September 1999	Patent 407 In-House Patent
Number of Employees	Proportion of Employees	Web
500 (2024)	R&D 30% Production & QA 40% Service 15% Others 15%	www.vieworks.com


Why Vieworks Entered Digital Pathology

X-ray Imaging

Started in 1999
Specialized in medical diagnostic imaging
Global No.2 in X-ray detector Pannel market

Digital Pathology

Realtime EF Technology with 3-Camera Launched in the U.S. market in 2025

(First introduced in Korea in 2024)

Bio Imaging

Started in 2016 Specialized in fluorescence and cell analysis Imaging Solution Foundation for Digital Pathology Business

Specialized in High-resolution Camera

Azer Scientific Histopathology Portfolio

	Specimen Collection	Accessioning/ Grossing	Processing	Embedding	Microtomy	Staining/ Advanced Dx
Histology	Prefilled Formalin KitsSpecimen ContainersFixatives	DecalcifiersScalpels/BladesMarking DyesCassettesPrimo Cassette Printer	Dehydrants / SolventsEmbedding Paraffin	CassettesParaffinEmbedding Center	Microtome BladesMicroscope SlidesCover GlassCoverslip TapePresto Slide Printer	
		accomply 1	Ann hank		AZZADA)	And Scients And Scients On On On On


Why Realtime EF(Extended Focus) Technology?

▼ The main difference between Histology and Cytology is Thickness

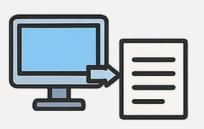
Subject	Histology	Cytology
Thickness	Uniform thickness ($\sim 4 \mu m$)	Nonuniform thickness due to cellular thickness →Z-stacking scanning is required
		ThinPrep® Slide
Туре	H&E, IHC, Biopsy	Liquid-Based Cytology, Smear
Characteristics	$\frac{ ext{Coverslip}}{ ext{Slide Glass}}$ 4 $\mu ext{m}$	$\frac{\text{Coverslip}}{\text{Slide Glass}} brace \sim 10 \ \mu\text{m}$

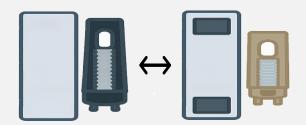
Realtime EF Technology

Realtime EF Technology

AzerView510

High-Performance Slide Scanner for Digital Pathology System

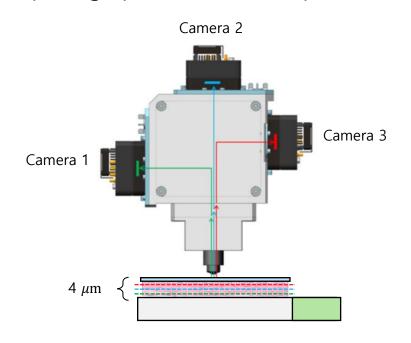

Why AzerView510?

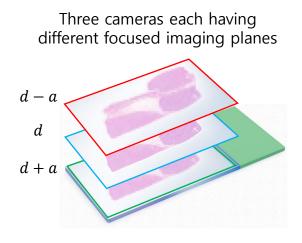

▼ AzerView510 Unique Features

Realtime EF(Extended Focus) technology

Significantly Smaller Image File Sizes

Interchangeable slide rack



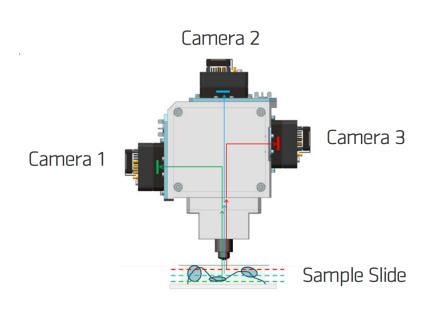

Dedicated Error Rack

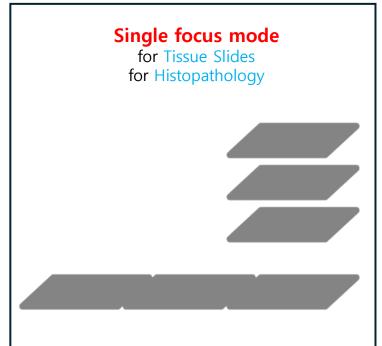
Realtime EF Technology

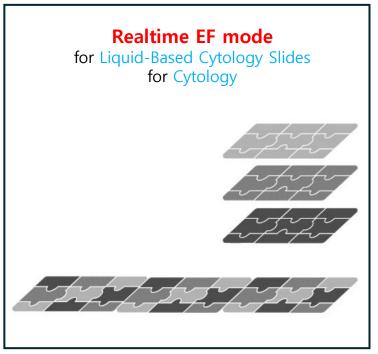
▼ 3 cameras capturing up to 4um focus depth in a single image

▼ Time and cost-effective image with more information

	Single Camera Imaging	Realtime Extended Focus
Focus depth (per image)	1~1.5um	4um
Scan time (per 3 stack)	3t	t
Data size (per 3 stack)	3x	X


3 times more


3 times less


Optimized Scan

V Optimal scan type is **selected** from 2 modes depending on slide type

Single Focus Mode for Histopathology

■ Realtime EF technology enhances focus accuracy, resulting in higher image quality and success rates.

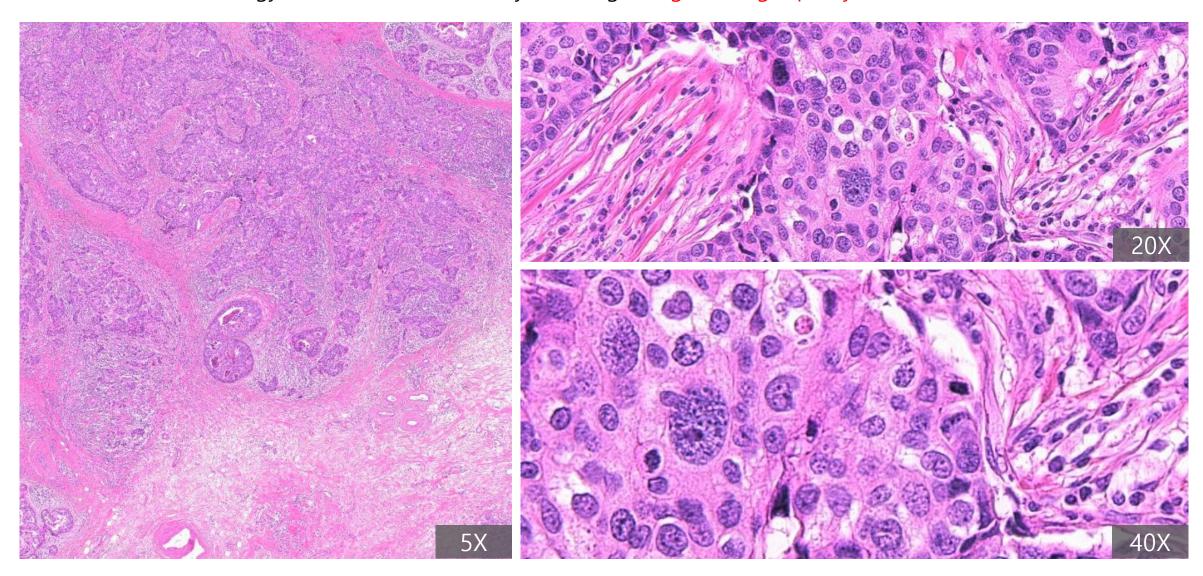
Camera 2

Single focus mode

Suitable for Histopathology

- Camera 1

 Slide Glass

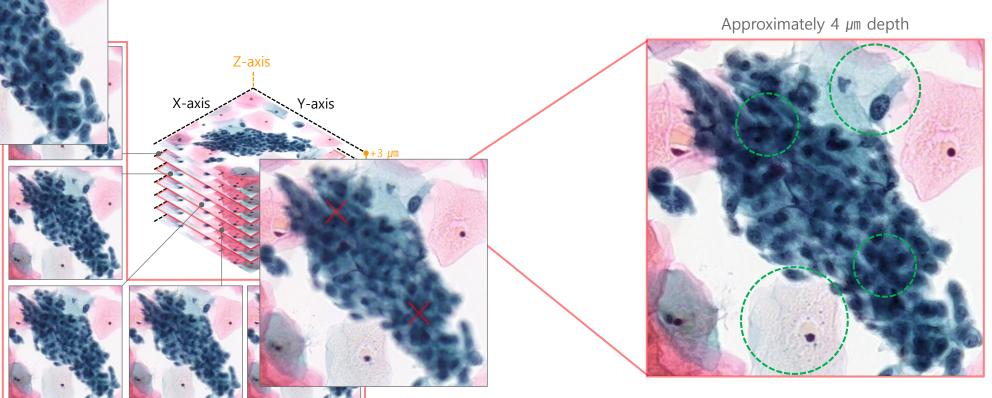

 4 μm

 Selected
- 1. Captures three images at different focal planes simultaneously
- Selects and stitches the best-focused image to generate WSI
- The three cameras used in Realtime EF technology are designed to cover approximately $4\mu m$ in depth, closely matching the average thickness of the tissue slides
- This design enables realtime auto focus, resulting in high quality imaging and ensures scan success rate of ≥ 99%

Single Focus Mode for Histopathology

■ Realtime EF technology enhances focus accuracy, resulting in higher image quality and success rates.

Realtime EF Technology in Z-stack


- V Faster and more accurate
- Z-stack imaging

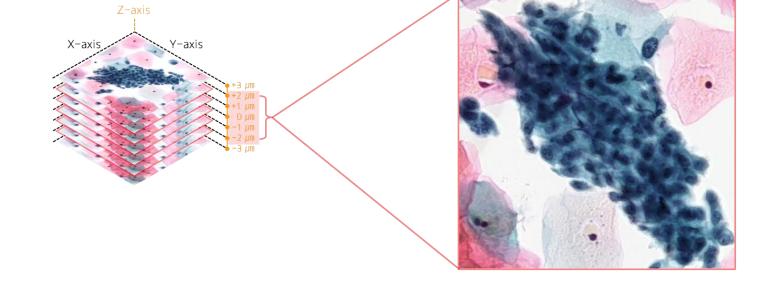
Capturing multiple images at different focal planes along the Z-axis (depth) of a sample to obtain a fully focused image of the specimen

ventional Z-stack imaging

linearly by the number of focal planes zes as the number of focal planes increases.

- Realtime EF mode overcomes these limitations while retaining the advantages of Z-stack imaging
 - 1) Capturing images at three focal planes in realtime
 - 2) Maintaining the same image size as a conventional image

Realtime EF Mode for Cytopathology*



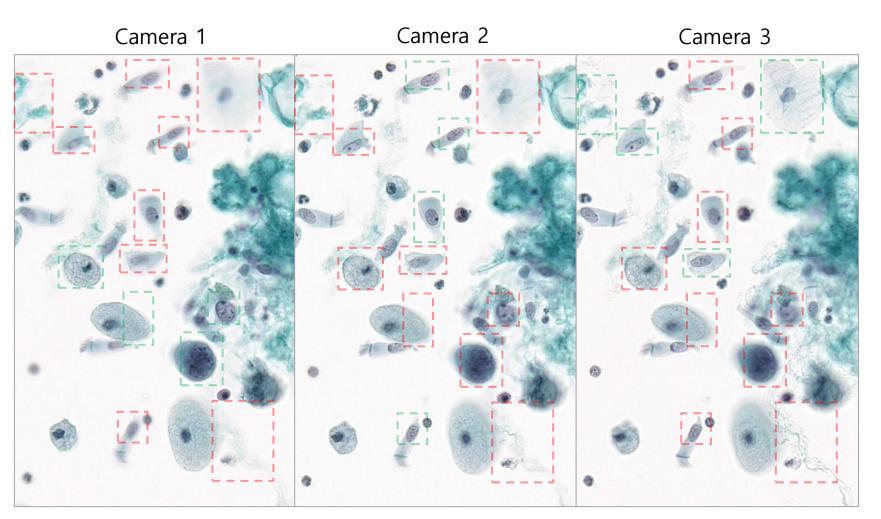
14

Approximately 4 µm depth

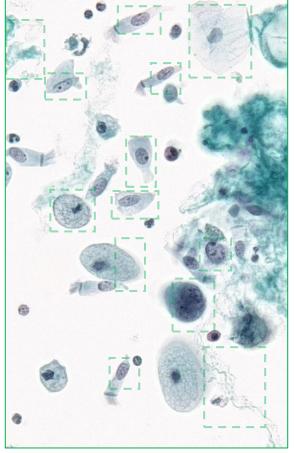
V Realtime EF technology breaks through the limitations of standard slide scanners in Cytopathology

Realtime EF scan mode Suitable for Cytopathology

- 1. Captures three images at different focal planes simultaneously
- 2. Selects and stitches the best-focused segmented areas to generates WSI

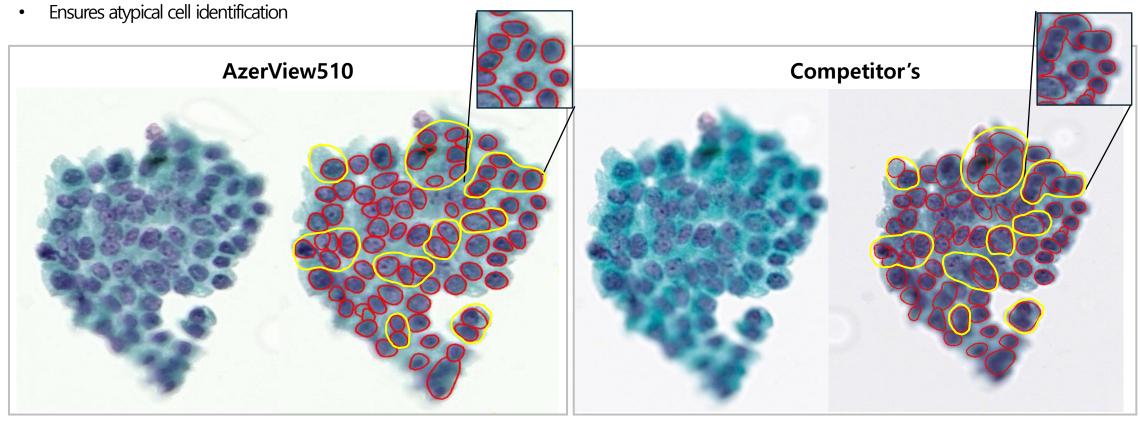

- Realtime EF scan mode overcomes limitations of conventional Z-stacking
- By using Realtime EF scan mode, a single image containing multiple focal layers information

* Optimized for Liquid-Based Cytology


Realtime EF Mode for Cytopathology

▼ Example of Realtime EF technology

Realtime EF technology


Realtime EF Technology in AI-Based segmentation

Nealtime EF technology significantly enhances performance in AI-based segmentation

Clean images with accurate focus is crucial to improve the precision of AI-based diagnoses and deep learning models

Ensures high-accuracy cell segmentation


Left: Original image / Right: Performing cell segmentation in AI-based computer-aided diagnosis (AI-CAD). Superior cell segmentation performance in images scanned with Realtime EF technology.

Unique features

▼ Interchangeable slide rack

Distinguish rack type automatically

- Compatible with racks from most commonly used slide stainer
- Patented Rack Adapter

▼ Dedicated Error Rack

Auto-sorting of error slide

- Slides without labels or with damaged barcodes
- Automatic scans quality evaluation

User Statements

Significantly Smaller Image File Sizes

■ Realtime EF technology image file size is one-third (1/3) smaller with no significant loss in Image quality

Filo namo	Image size (KB)		
File name	Competitor's	AzerView	
C23-000047	1,488,016	411,694	
C23-000048	1,435,098	397,375	
C23-000152	1,580,419	492,693	
C23-000154	1,630,124	546,150	
C23-000208	1,322,757	405,308	
C23-000254	1,426,706	435,895	
C23-000255	1,409,871	459,861	
C23-000365	1,521,817	429,846	
C23-000424	1,498,266	428,181	
C23-000616	1,463,453	459,188	
C23-000856	1,528,157	434,132	
C23-000981	1,605,401	490,381	
C23-000985	1,452,860	412,753	
C23-001406	1,411,700	444,832	
C23-001456	1,449,210	410,201	
C23-001459	1,518,646	441,091	
C23-001515	1,562,198	538,055	
Average	1,488,512	449,273	

Opinion about AzerView510

"The Cytology images scanned by AzerView510 are truly outstanding, with remarkable clarity and detail."

> Informal Feedback from a pathologist who tested the system

"This device's
Realtime EF technology
unlocks new possibilities in
digital pathology."

Prof. Yosep Chong (Uijeongbu St. Mary's Hospital)

"AzerView510 is compatible with both cytology and histology slides."

Prof. Jin Roh (Ajou University Hospital)

Specifications

Specifications

■ Large capacity and high scan speed with superior throughput

Product	AzerView 510	AzerView 210 (Coming Soon!)	
Imaging Type	Brightfield		
Number of Slides (1 x 3" slide glasses)	Leica rack: 510 (17 racks) Sakura rack: 340 (17 racks) Leica rack: 210 (7 racks) Sakura rack: 140 (7 racks)		
Scan Speed (15x15mm²)	30 sec	≒ 23 sec	
Throughput (/hr)	83 slides	≒ 60 slides	
Pixel Resolution ((0.275	0.1725	
Dimension (Weight)	1080 x 845 x 638 (167.8kg)	$= 550 \times 725 \times 625 (95 \text{kg})$	
Rack Compatibility	Yes (Leica 30/racks; Sakura 20/rack)		
Scan Success Rate	≥ 99%		
Z stacking	Yes (Dedicated 3 camera fusion included)		
Slide Type	1 x 3"		
Error Slide Sorting Function	Yes		
Barcode Scan	1D, 2D (Data Matrix, QR code, Code 39, Code 128, Code 128A, Code 128B, Code 128C)		

Thank you

Contact Info

Ralph Finkbiner
Sr. Director of Product Management
ralph@biolyst.com

Mike Lake Sr. Director of Sales michael.lake@biolyst.com